python kubernetes client

Terence 105 Published: 09/30/2024

python kubernetes client

The Python Kubernetes Client! A fantastic tool for interacting with the mighty Kubernetes cluster.

To get started, you'll need to install the kubernetes package using pip:

pip install kubernetes

Once installed, you can import the client in your Python script:

from kubernetes.client import Config, ApiClient

The first step is to configure the client with the cluster's API server endpoint and credentials. You can do this by creating a Config object:

config = Config()

config.api_key['Authorization'] = 'Bearer YOUR_CLUSTER_TOKEN'

config.host = 'https://your-cluster-api-server.com:443'

Replace YOUR_CLUSTER_TOKEN with the actual token for your cluster, and update the host to match your cluster's API server endpoint.

Next, create an instance of the ApiClient using the configured Config object:

client = ApiClient(config)

Now you're ready to start making API calls! The client provides a range of methods for working with Kubernetes resources. Here are a few examples:

Deployments

Create a deployment:

deployment = {

'apiVersion': 'apps/v1',

'kind': 'Deployment',

'metadata': {'name': 'my-deployment'},

'spec': {

'replicas': 3,

'selector': {'matchLabels': {'app': 'my-app'}},

'template': {

'metadata': {'name': 'my-pod'},

'spec': {

'containers': [

{'image': 'nginx:latest', 'name': 'nginx'}

]

}

}

}

}

client.create_namespaced_deployment('default', deployment)

Get a list of deployments:

deployments = client.list_deployment_for_all_namespaces().items

print(deployments)

Pods

Create a pod:

pod = {

'apiVersion': 'v1',

'kind': 'Pod',

'metadata': {'name': 'my-pod'},

'spec': {

'containers': [

{'image': 'nginx:latest', 'name': 'nginx'}

]

}

}

client.create_namespaced_pod('default', pod)

Get a list of pods:

pods = client.list_pod_for_all_namespaces().items

print(pods)

Services

Create a service:

service = {

'apiVersion': 'v1',

'kind': 'Service',

'metadata': {'name': 'my-service'},

'spec': {

'selector': {'matchLabels': {'app': 'my-app'}},

'ports': [{'protocol': 'TCP', 'port': 80}],

'type': 'LoadBalancer'

}

}

client.create_namespaced_service('default', service)

Get a list of services:

services = client.list_service_for_all_namespaces().items

print(services)

These are just a few examples of what you can do with the Python Kubernetes Client. With this library, the possibilities are endless!

How to install Python in Kubernetes pod?

Installing Python within a Kubernetes pod is a straightforward process that requires a few steps. Here's a step-by-step guide to get you started:

1. Create a new Kubernetes deployment

Begin by creating a new Kubernetes deployment using YAML or JSON files. This will define the container image, ports, and other settings for your application.

Here's an example of a basic deployment.yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

name: python-app

spec:

replicas: 1

selector:

matchLabels:

app: python-app

template:

metadata:

labels:

app: python-app

spec:

containers:

name: python-app

image: python:3.9-slim

command: ["python", "-c"]

args: ["import asyncio; print('Hello, Kubernetes!');"]

In this example, we're using the official Python 3.9 image and running a simple Python script that prints a message.

2. Create a Dockerfile for your Python application

Next, create a Dockerfile to build an image for your Python application. This file will define how to install and configure Python within your container.

Here's an example Dockerfile:

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY . .

CMD ["python", "main.py"]

In this example, we're assuming you have a requirements.txt file that specifies the dependencies for your Python application, and a main.py script that runs your application.

3. Build and push your Docker image

Build your Docker image using the docker build command:

docker build -t my-python-app .

Then, push your image to a container registry like Docker Hub:

docker push my-python-app

4. Update your Kubernetes deployment with the new image

Finally, update your Kubernetes deployment to use the new image:

apiVersion: apps/v1

kind: Deployment

metadata:

name: python-app

spec:

replicas: 1

selector:

matchLabels:

app: python-app

template:

metadata:

labels:

app: python-app

spec:

containers:

name: python-app

image: my-python-app:latest

command: ["python", "-c"]

args: ["import asyncio; print('Hello, Kubernetes!');"]

In this example, we're updating the image field to use our new Docker image.

5. Apply your updated deployment configuration

Finally, apply your updated deployment configuration using the kubectl apply command:

kubectl apply -f deployment.yaml

This will create or update your Kubernetes deployment with the new Python image and configuration.

That's it! With these steps, you should now have a Kubernetes pod running your Python application.