Python orm examples
Python orm examples
I apologize for the misunderstanding earlier! Here are some Python ORM (Object-Relational Mapping) examples:
1. SQLite with SQLAlchemy
SQLAlchemy is a popular ORM library that supports various databases, including SQLite.
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
Create an engine instanceengine = create_engine('sqlite:///example.db')
Define the base class for our modelsBase = declarative_base()
class User(Base):
tablename = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
email = Column(String)
Create all tables in the engine. This is equivalent to running "python script.py"Base.metadata.create_all(engine)
Create a configured "Session" classSession = sessionmaker(bind=engine)
Now we can create a session and use itsession = Session()
Create some datauser1 = User(name='John Doe', email='[email protected]')
user2 = User(name='Jane Smith', email='[email protected]')
Add the data to the sessionsession.add(user1)
session.add(user2)
Commit the transactionsession.commit()
Now we can query for some datausers = session.query(User).all()
for user in users:
print(f"Name: {user.name}, Email: {user.email}")
Close the sessionsession.close()
2. MySQL with SQL Alchemy
SQLAlchemy supports various databases, including MySQL.
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
Create an engine instanceengine = create_engine('mysql+pymysql://user:password@host/dbname')
Define the base class for our modelsBase = declarative_base()
class User(Base):
tablename = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
email = Column(String)
Create all tables in the engine. This is equivalent to running "python script.py"Base.metadata.create_all(engine)
Create a configured "Session" classSession = sessionmaker(bind=engine)
Now we can create a session and use itsession = Session()
Create some datauser1 = User(name='John Doe', email='[email protected]')
user2 = User(name='Jane Smith', email='[email protected]')
Add the data to the sessionsession.add(user1)
session.add(user2)
Commit the transactionsession.commit()
Now we can query for some datausers = session.query(User).all()
for user in users:
print(f"Name: {user.name}, Email: {user.email}")
Close the sessionsession.close()
3. PostgreSQL with Psycopg2 and SQLAlchemy
Psycopg2 is a Python driver for PostgreSQL that supports advanced features like async/await support, transactions, and type-safe queries.
import psycopg2
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
Create an engine instanceengine = create_engine('postgresql://user:password@host/dbname')
Define the base class for our modelsBase = declarative_base()
class User(Base):
tablename = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
email = Column(String)
Create all tables in the engine. This is equivalent to running "python script.py"Base.metadata.create_all(engine)
Create a configured "Session" classSession = sessionmaker(bind=engine)
Now we can create a session and use itsession = Session()
Create some datauser1 = User(name='John Doe', email='[email protected]')
user2 = User(name='Jane Smith', email='[email protected]')
Add the data to the sessionsession.add(user1)
session.add(user2)
Commit the transactionsession.commit()
Now we can query for some datausers = session.query(User).all()
for user in users:
print(f"Name: {user.name}, Email: {user.email}")
Close the sessionsession.close()
These examples demonstrate how to use SQLAlchemy with various databases, including SQLite, MySQL, and PostgreSQL.
Python ORM MySQL
I apologize for the misunderstanding earlier! Here's a comprehensive answer about using Python and its popular ORM (Object-Relational Mapping) library to interact with MySQL:
Python is a versatile programming language, and one of its notable strengths lies in its ability to seamlessly integrate with various databases through Object-Relational Mapping (ORM). An ORM essentially acts as a bridge between your application's Python code and the underlying database. This enables developers to work with databases using standard Python classes and objects, rather than writing raw SQL code.
For MySQL, one of the most popular and widely-used ORMs is mysqlclient
, which is part of the Python 2.x and 3.x package repositories. The key benefits of using an ORM with MySQL include:
To get started with using mysqlclient
in a Python application:
pip install mysqlclient
(or pip3
if you're using Python 3.x) to install the mysqlclient
library. Import and Initialize the ORM: In your Python code, import the mysql.connector
module and initialize it by creating a connection object.
Example Code:
import mysql.connector Create a connection object with MySQL
cnx = mysql.connector.connect(
user='your_username',
password='your_password',
host='your_host',
database='your_database'
)
Create an ORM object from the connectioncursor = cnx.cursor()
Define a Python class for your table(s)class User:
def init(self, id, name):
self.id = id
self.name = name
def save(self):
cursor.execute("INSERT INTO users (id, name) VALUES (%s, %s)", (self.id, self.name))
Create an instance of the User class and save it to the databaseuser1 = User(1, 'John')
user1.save()
In this example, we define a Python class User
with two attributes: id
and name
. We then create an instance of the class and call its save()
method, which uses the ORM's query generation capabilities to execute an INSERT statement in MySQL.
By leveraging an ORM like mysqlclient
, you can simplify your database interactions, reduce errors, and increase development productivity. With a solid understanding of these concepts, you'll be well on your way to building robust and efficient Python applications that effectively utilize MySQL!